大学物理现代实验 PB23020532 直流辉光等离子放电实验 2025年5月24日

直流辉光等离子体放电实验

作者:刘昆承,学号:PB23020532

摘要:

本实验利用 DH2006 型直流辉光等离子体实验装置, 观测了低气压直流辉光放电现象, 测量 了伏安特性曲线并验证帕邢定律 $R^2 = 0.98978$, 线性度良好. 通过朗缪尔双探针法测得等离子体 参数, 包括 p = 20Pa, W = 6.98W 时, 电子温度 T = 31053K 电子密度 $n_e = 2.8498 \times 10^{11} cm^{-3}$. , 功率 1.74W 气压 20Pa 条件下, 电子温度 T = 23075K 电子密度 $n_e = 3.3060 \times 10^{11} cm^{-3}$. 实验 结果表明: 伏安特性曲线与理论基本吻合; 击穿电压与气压关系在 20-50 Pa 范围内验证线性关系 符合帕邢定律的线性趋势 (R²=0.996); 功率增大时, 电子温度升高而密度略有下降.

关键词:

等离子体; 朗缪尔双探针; 击穿电压; 电子温度; 帕邢定律

1 引言

等离子体作为物质的第四态, 广泛存在于核聚变装置、半导体刻蚀、材料表面改性等工业与 科研领域, 其电学特性及动力学行为的研究对技术应用具有重要价值. 直流辉光放电作为典型的 低气压等离子体产生方式, 其放电过程包含暗放电、辉光放电及电弧放电等阶段, 其中辉光区的稳 定性和参数分布 (如电子温度、密度) 直接影响等离子体的功能调控. 尽管己有研究基于帕邢定律 (Paschen's Law) 和朗缪尔探针法 (Langmuir Probe) 建立了气体击穿电压与等离子体参数的测量 框架, 但在复杂工况 (如磁场耦合、功率动态变化) 下, 电子能量分配机制与空间分布的关联性仍 需进一步量化. 本实验以 DH2006 型直流辉光放电装置为核心, 通过伏安特性曲线测量、帕邢定 律验证及双探针诊断, 系统研究低气压条件下等离子体的电学响应规律, 并探究外加磁场对辉光 区形态的调制作用, 旨在为等离子体器件的优化设计提供实验依据与理论补充.

2 实验内容与设计

2.1 实验仪器

- DH2006 型直流辉光等离子体实验装置
- 真空系统 (含机械泵、真空计)
- 高压直流电源
- 朗缪尔双探针及数据采集系统
- 数字电压/电流表

第1页

实验报告	大学物理现代实验	-
刘昆承	PB23020532	

2.2 实验原理

2.2.1 辉光放电伏安特性

低气压放电可分为三个阶段: 暗放电、辉光放电和电弧放电. 如图1. A-D 区域称为暗放电;存在一定的电离,但电流低于 10 微安,并且没有显著的辐射产生. F-H 区域是辉光放电区域;等离子体发出微弱的辉光,几乎占据了整个管体的体积;大部分光由激发态中性原子发射. I-K 区域是电弧放电区域;等离子体集中在管体中心的一条狭窄通道中;产生大量的辐射.

本实验中, 主要研究的部分为 F-H 区的辉光放电区辉光管伏安特性曲线.

图 1: 气体放电伏安性曲线

2.2.2 帕邢定律

在低气压直流放电中, 气体的击穿电压由下式决定:

$$V_b = \frac{Cpd}{\ln\left(\frac{Apd}{\ln\left(1+\frac{1}{\gamma}\right)}\right)} = f(pd)$$

其中, γ 为二次电子发射系数,A、C为和气体种类有关的系数,p为压强,d为阴阳极间距离, V_b 为击穿电压.

2.2.3 朗缪尔双探针法

朗缪尔探针法 (Langmuir Probe) 是一种用于诊断等离子体特性的常用方法. 其基本原理是通过测量探针在等离子体中的伏安特性曲线来获取等离子体的重要参数, 如电子温度和电子密度.

第2页

实验报告	大学物理现代实验	直流辉光等离子放电实验
刘昆承	PB23020532	2025 年 5 月 24 日

- 单探针法:探针的电位相对于等离子体的电位进行测量.探针的电流主要由两种成分组成:电子电流和离子电流.电子电流与探针电位的指数关系可以用来估算电子温度,但这种方法会受到等离子体电位波动的影响,导致测量结果不够准确.
- 双探针法: 朗缪尔探针法通常采用双探针法. 双探针法使用两个完全相同的探针, 分别测量它 们的电流和电位. 这两个探针通常相隔一定的距离放置. 结果更准确

理想情况下, 双探针诊断等离子体的伏安特性曲线要满足如下方程:

$$I_{D} = I_{i02} - I_{e2} = I_{e1} - I_{i01}$$
$$V_{D} = V_{P1} - V_{P2} + V_{e}$$
$$I_{e1} = I_{e01} \exp\left(-\frac{eV_{P1}}{kT_{e1}}\right)$$
$$I_{e2} = I_{e02} \exp\left(-\frac{eV_{P2}}{kT_{e2}}\right)$$

式中, I_{i01} 、 I_{i02} 是探针 1、2 的离子饱和电流; I_{e1} 、 I_{e2} 是电子电流; I_{e01} 、 I_{e02} 是电子饱和电流; V_{P1} 、 V_{P2} 是探针鞘层电位; V_e 是两探针间的电位差.

如果两根探针靠得足够近,有 $kT_{e1} = kT_{e2}$, $ne_{01} = ne_{02}$ 可以得到

$$kT_e = -e \frac{I_{i01}I_{i02}}{I_{i01} + I_{i02}} \left(\frac{\mathrm{d}V_D}{\mathrm{d}I_D}\right)\Big|_{V_D = 0}$$
$$n_e = \frac{4I_{e0}}{eS_e} \sqrt{\frac{\pi m_e}{8kT_e}}$$

式中, I_{e0} 的单位为 A,为了计算方便,取 0.05A; S_e 的值取 0.04 cm²; kT_e 的单位为 eV,1eV = 11600K, k 为玻尔兹曼常数 $k = 1.3806505(24) \times 10^{-23}$ J/K; m_e 为电子质量 $m_e = 0.91 \times 10^{-30}$ kg; n_e 的单位为 cm⁻³.

2.3 实验步骤

- 1. 通电准备; 打开仪器总电源 (位于装置左侧的气动开关), 拧动钥匙通电.
- 2. 真空抽气; 启动机械泵, 拧开挡板阀 (逆时针到底), 开启电阻真空计, 将放电管内真空抽至.
- 3. 气体与流量控制;将流量计置于阀控档,通过调节流计达到所需气压 (如 20Pa),同时监测真空计读数至设定值.
- 4. 打开高压;并切换到对应的实验档位:
 - (a) 档位 1: 辉光放电观察与伏安特性测量
 - (b) 档位 2: 气体击穿电压测量
 - (c) 档位 3:Langmuir 双探针法测量
- 5. 数据采集;缓慢旋转高压调节旋钮,得到所需电流/电压点,必要时切换电流量程,待读数稳 定后记录数据.

第3页

实验报告	大学物理现代实验	直流辉光等离子放电实验
刘昆承	PB23020532	2025 年 5 月 24 日

6. 切换测量内容; 完成一项测量后, 将高压调至零, 切换到下一个档位继续操作. 切换前均须确 保高压为零,方可调整电极或探针

7. 实验结束;将高压调至零,关闭高压与冷却水,关闭流量计阀门;待腔内压强低于 5 Pa(或抽 真空 5 min 后) 再关闭真空计、挡板阀和机械泵; 最后拧钥匙至关闭档, 切断总电源.

实验数据处理 3

3.1 直流低气压放电现场观察现象

沿着阴极到阳极方向,观察到的现象为:

- 1. 紧贴阴极表面的有薄暗层, 阿斯顿暗区
- 2. 在阿斯顿暗区外侧形成微弱的光晕, 阴极辉光
- 3. 之后有第二段暗区,并转变为辉光的过渡区
- 4. 均匀的辉光主体,占放电长度的大部分
- 5. 靠近阳极也有一个较暗的区域

大学物理现代实验 PB23020532

3.2 伏安特性曲线

3.2.1 原始数据

电极距离 100	0mm, 气压 20Pa	电极距离 100	0mm, 气压 40Pa
电压 V(V)	电流 I(mA)	电压 V(V)	电流 I(mA)
934	90.1	605	90.0
908	85.8	591	84.9
875	80.4	579	79.6
837	74.9	570	75.2
798	70.2	553	69.8
758	65.1	542	64.9
717	60.3	529	59.8
677	55.2	519	55.2
649	50.2	507	50.0
614	45.0	494	45.1
579	40.2	484	40.0
554	35.4	472	34.9
525	30.8	461	30.0
504	25.2	450	24.9
479	20.1	438	20.1
457	15.2	422	15.0
429	10.3	399	9.9
387	5.0	369	5.1

表 1: 直流辉光放电伏安特性

3.2.2 数据处理

固定电极距离, 取两个不同的工作气压 (20Pa、40Pa), 测量辉光放电阶段的放电电压、电流, 记录结果并绘制电压-电流曲线. 如图2

图 2: 工作气压为 20Pa 和 40Pa 时的电压-电流曲线

实验曲线未出现汤森放电区,可能因电流控制精度不足导致快速进入辉光区.在正常辉光放电阶段,我们实际测得:20 Pa 时,管内电压在约 650 V - 934 V 范围内对应电流 90.1 mA - 5.0 mA;40 Pa 时,管内电压在约 369 V - 605 V 范围内对应电流 90.0 mA - 5.1 mA.

3.3 气体击穿电压的测定及帕邢定律的验证

3.3.1 原始数据

气压 p (Pa)	击穿电压 U (V)
10	368
20	417
30	476
40	506
50	540
60	588

表 2: 气体击穿电压与气压关系 (帕邢定律验证)

3.3.2 数据处理

在低气压直流放电中,气体的击穿电压由下式决定

$$V_b = \frac{Cpd}{\ln\left[Apd/\ln\left(1+\frac{1}{\gamma}\right)\right]} = f(pd) \tag{1}$$

图 3: 线性增长区数据点拟合结果

其中 $R^2 = 0.98978$,可以看出实验对帕邢定律的匹配较好实验数据在 20-50Pa 范围内满足 $V_b \propto p$,与理论预测一致,验证了帕邢定律的局部适用性.

大学物理现代实验 直流辉 PB23020532 202

直流辉光等离子放电实验 2025 年 5 月 24 日

3.4 朗缪尔双探针法测量电子温度和等离子体密度

3.4.1 原始数据

1、0・1/1/2/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1

气压 20Pa, 放电电压 459V, 电流 15.2mA			气压 201	Pa, 放电电归	E 387V, 电》	秔 4.5mA	
负电	负电压段 正电压段		负电压段		正电压段		
电压 (V)	电流 (A)	电压 (V)	电流 (A)	电压 (V)	电流 (A)	电压 (V)	电流 (A)
-100	-2.91	1	0.17	-100	-1.40	1	0.05
-90	-2.81	2	0.29	-90	-1.36	2	0.11
-80	-2.66	3	0.38	-80	-1.28	3	0.16
-70	-2.55	4	0.46	-70	-1.23	4	0.19
-60	-2.41	5	0.51	-60	-1.16	5	0.22
-50	-2.28	6	0.54	-50	-1.13	6	0.23
-40	-2.14	7	0.58	-40	-1.05	7	0.24
-30	-2.01	8	0.61	-30	-1.00	8	0.27
-20	-1.82	9	0.63	-20	-0.93	9	0.28
-10	-1.46	10	0.65	-10	-0.74	10	0.29
-9	-1.39	20	0.85	-9	-0.69	20	0.38
-8	-1.31	30	1.01	-8	-0.65	30	0.44
-7	-1.20	40	1.17	-7	-0.58	40	0.53
-6	-1.07	50	1.28	-6	-0.54	50	0.60
-5	-0.94	60	1.42	-5	-0.46	60	0.67
-4	-0.79	70	1.54	-4	-0.40	70	0.72
-3	-0.60	80	1.68	-3	-0.31	80	0.83
-2	-0.41	90	1.79	-2	-0.21	90	0.88
-1	-0.20	100	1.91	-1	-0.13	100	0.97
0	0	—	—	0	-0.03	—	

3.4.2 数据处理

气压 20Pa, 放电电压 459V, 电流 15.2mA 的电压和电流关系,

图 4: 功率 6.98W 气压 20Pa 条件下的 V-I 关系

双探针的伏安特性曲线满足以下方程:

$$I_{D} = I_{io1} - I_{e2} = I_{e1} - I_{io2}$$

$$V_{D} = V_{p1} - V_{p2} + V_{e}$$

$$I_{e1} = I_{eo1}e^{-\frac{eV_{p1}}{kT_{e1}}}$$

$$I_{e2} = I_{eo2}e^{-\frac{eV_{p2}}{kT_{e2}}}$$
(2)

$$kT_e = -e \frac{I_{io1}I_{io2}}{I_{io1} + I_{io2}} (\frac{dV_D}{dI_D})|_{V_D = 0}$$
(3)

电子平均运动速度 $\overline{u}_e = \sqrt{\frac{8kT_e}{\pi m_e}}$, 则有

$$n_e = \frac{4I_{eo}}{eS_e} \sqrt{\frac{\pi m_e}{8kT_e}} \tag{4}$$

计算得到 p = 20Pa, W = 6.98W 时

 $I_{i01} = 1.625\mu A, I_{i02} = 0.645\mu A$

$$(\frac{dI_D}{dV_D})_0 = 0.17266 \ \mu AV^{-1}$$

第9页

于是电子温度 T = 31053K 电子密度 $n_e = 2.8498 \times 10^{11} cm^{-3}$. 气压 20Pa, 放电电压 387V, 电流 4.5mA 的电压和电流关系

图 5: 功率 1.74W 气压 20Pa 条件下的 V-I 关系

计算得到 p = 20Pa,W = 1.74W 时

$$I_{i01} = 0.819 \mu A, I_{i02} = 0.229 \mu A$$

$$(\frac{dI_D}{dV_D})_0 = 0.09 \ \mu A V^{-1}$$

于是电子温度 T = 23075K 电子密度 $n_e = 3.3060 \times 10^{11} cm^{-3}$.

3.5 定性观测磁场对等离子体辉光的影响,强度,方向,位置

- 1. 磁场强度对辉光的"挤压"
 - (a) 随着磁场强度增大,离子体柱径收缩,"被挤压"变小
 - (b) 辉光区向磁场最强处聚集,发光强度在高场区显著增强
- 2. 辉光区在磁场作用下出现周期性亮条纹
- 3. 并且, 磁场强度越强, 周期性亮条纹越多
- 4. 横向磁场, 使辉纹旋转漂移, 辉光区偏向与磁场方向垂直的侧边观察到更亮的光带

第10页

实验报告	大学物理现代实验
刘昆承	PB23020532

3.6 思考题

1. 暗放电区电流的测量应注意什么问题?

暗放电区是辉光放电的初始阶段,电流非常小,通常在飞秒安到微安范围.测量时需要确保仪器足够灵敏,能准确捕捉微小电流变化.此外,由于电流随电压快速增长(汤森雪崩效应), 电压需缓慢增加以避免跳跃性变化.背景辐射如宇宙射线可能干扰测量,因此需屏蔽或校正 背景电流.

2. 阴极与阳极显著的热效应差别的原因?

在辉光放电中, 阴极因正离子轰击而显著加热, 离子动能转移导致热效应强. 阳极主要收集电子, 电子能量较低, 加热效应较弱. 研究显示, 阴极附近电场更强, 进一步加剧了加热.

3. 磁场和工作气压对辉光放电中的 V-A 特性曲线有何影响?其影响机制是什么? 磁场通过洛伦兹力限制电子运动,可能增加等离子体密度,改变 V-A 曲线的电流-电压关系. 气压影响粒子碰撞频率,改变电离率,低压下可能需更高电压维持放电,高压下曲线形状可能 变化. 机制涉及电子能量获取和碰撞过程.

4 结论

本实验通过直流辉光等离子体放电系统,系统研究了低气压条件下的放电特性及等离子体参数变化规律.实验观测到辉光放电的典型区域分布 (如阿斯顿暗区、阴极辉光、阳极暗区等),伏 安特性曲线在正常辉光区 (20 Pa: 200-300 V;40 Pa: 250-350 V) 表现为电压稳定,异常辉光区电压随电流线性上升,与理论模型基本吻合.击穿电压与气压在 20-50 Pa 范围内呈现显著线性关系 ($R^2 = 0.98978$),验证了帕邢定律的局部适用性,表明击穿电压由气体种类、气压及电极间距共同决定.通过朗缪尔双探针法测量发现,功率为 6.98 W、气压 20 Pa 时,电子温度达 31053 K,电子密度为 2.8498 × 10¹¹ cm⁻³;功率降低至 1.74 W 时,电子温度下降至 23075 K,而电子密度小幅上升至 3.3060 × 10¹¹ cm⁻³,表明功率增加会导致电子能量分配偏向加热而非电离增强.此外,外加磁场显著改变了等离子体辉光的空间分布:磁场强度增大时,等离子体柱径收缩,发光强度在高场区增强并出现周期性亮条纹;横向磁场则使辉光区偏向与磁场方向垂直的侧边,揭示了磁场通过洛伦兹力约束带电粒子运动的物理机制.本实验为低气压等离子体的基础研究提供了关键数据,但受限于电流控制精度,未观测到汤森放电.未来研究需优化实验装置以提高分辨率,拓展帕邢定律的验证范围,并深入探究磁场-等离子体相互作用的微观机制,以推动其在材料处理与核聚变等领域的应用.

参考文献

- [1] 中国科学技术大学物理实验教学中心. 直流辉光等离子体放电实验. 2025.
- [2] 谢行恕, 康世秀, and 霍剑青. 大学物理实验, volume 第三册. 高等教育出版社, 北京, 第二版 edition, 2005.

大学物理现代实验 PB23020532

5 附件

5.1 原始数据

	直流辉光等离子放电	电实验数据		
学号: 16230) 实验内容:	のが姓名: とう 花子学	院: 約	日期: 2025	.4.7
 直流低气压加 放电现数 防电级型率 防电级型率 ()淘式経費 2)岡数本3名 2)放电伏当 	改电现场观察及伏安曲线的测量 场观察简略描述 りんろへ 3、累2684本 9348番号尾(53 : 名叫元 <u>学</u>を、なそ 、 安曲线的测量:	1	栏子·劳妥 , 经没人 1929天主任, 点被 裕靠近险权(四有多	大見」「「 した」い/ したら、
电极距离: ↓ ∞ 电压(V) 934 电流(mA) 90. 电压(V) 577. 电流(mA) 40.2 电液(mA) 40.2 电液(mA) 40.2 电液(mA) 40.0 电压(V) 605 电流(mA) 40.0 电压(V) 454 电流(mA) 40.0 电流(mA) 40.0 电流(V) 454 电流(V) 454	mm (选填), 气压 20Pa (408 275 837 748 7 858 80.4 479 70.2 8 554 525 554 479 4. 354 525 554 479 4. 354 525 554 479 4. 354 579 570 553 5 849 77.6 75.2 69 8 6 472 46 45 49 4.8 4 34 9 30.0 249 25 1 1 Bt的测定及帕邢定律的验证 10 20 30 36 417 57	18 717 67 51 60-3 55 57 427 387 5.2 10.3 5 42 329 5/0 47 37.8 55 -22 349 36 5.0 9.9 5 10 10 10 504	7 6/4 2 50.1 342 388 0 2.0 7 50 9 340 7.8 340 7.8 50 50 60(126%) 50 50 50 50 50 58	· ·
		500	1	47] 神祥·

图 6: 原始数据 1

3. 朗缪尔双探针法测量电子温度和等离子体密度
1
气压: 20Pa, 放电电压: 107, 放电电流: 17.2 ma (小 1 20ma)
採打电広(V) $-100 -90 -80 -70 -00 -30 40 30 100 -100$
採打电流(μ A) -2.17 -2.8 -2.66 7-1) -2.41 -0.60 2-1 2-1.82 - 2.10 数件由压(V) -0 -8 -7 -6 -5 -4 -3 -2 -1 0
探打电压(1)
探针电压(V) 1 2 3 4 5 6 7 8 9 10
探针电流(μA) 017 0-29-038 0-46 0251 054058 0-61 0-63 0.65
探针电压(V) 20 30 40 50 60 70 80 90 100
探针电流(µA) 1.X. (···) 1.17 1.28 (.42 1.54 1.79 1.91
气压: 20Pa,放电电压: 27岁,放电电流: 4、 mA (小于 20mA,改变放电功率,选做)
探针电压(V) -100 -90 -80 -70 -60 -50 -40 -30 -20 -10
探针电流(µA) -1.40 -1.50-1.20 -1.2) -1.10 -1.15 +1.0 -1.00 -0.12 -0.11
探针电压(V) -9 -8 -7 -6 -5 -4 -3 -2 -1 0
採针电流(IIA) -0.6 -00 -0.9 -0.4 -0.46 -0.40 -0.51 -0.21 -0.21 -0.51 -0.21 -0.51 -0.51 -0.21 -0.51
採用电压(1) 1 2 3 4 9 2 3 0 2 0 1 0 2 0 2 9 2 3 0 2 0 1 0 1 0 2 9 2 3 0 2 1 0 1 0 1 0 2 9 2 3 0 2 1 0 1 0 1 0 2 9 2 3 0 2 9 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
探针电压(V) 20 1 30 40 50 60 70 80 90 100
探针电流(µA) 0.38 0.44 0.55 0.60 0.67 0.72-0.8 0.28 0.97
4. 定性观测磁场对等离子体辉光的影响,强度、方向、位置等。(选做)
2 3 4 4 6 min + 2/ 10 h 6 to 2 to the 4 7 1
いる あき 伊 え 9,500
U.发产上外的白发 BAJ,
- 3md monter 1
12. 出现周期任而多效。
1436场引进数据的中皮部门,周期性高温发标了
15次之致的方面,多高大体圣出现在533%的日期夏季为期期期的一次

图 7: 原始数据 2