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1 Blotzmann and Einstein Model

Why study condense matter physics?

• It is the world

• it is useful

• it is deep

• anti-reductionism

• It is a laboratory

1.1 Heat capacity(of solids)

Heat capacity

C =
∂Q

∂T
(1)

In solid Cp ≈ Cv ≈ C and the α is the thermal expansion coefficient , β is the isothermal
compressibility

Cp − Cv =
V Tα2

β
(2)

And for monatomic gas the capacity is Cv = 3kB/2, with kB being Boltzmann’s constant.
For solid the capacity is C = 3kB Boltzmann constructed this model using a harmonic well
formed by the interaction with its neighbors. Using equipartion THM every freedom has the
energy C/N = 1/2kB It hold well at room temperature, but in low temperature,

1.2 Einstein’s Calculation

Using quantum mechanics, ω =
√

k
m

En = h̄ω(n+ 1/2) (3)

1 Dimension oscillator The partition function is defined as:

Z =
∑
i

e−βEi β =
1

kBT
(4)

The partition function Z1Dis then the sun over all state

Z1D =
∞∑

n=0

e−βEn =
∑

e−βh̄ω(n+1/2) (5)

the probability of the system being in state n is:

Pn =
e−βEn

Z1D

(6)

Thus,the average energy is:

⟨E⟩ =
∞∑

n=0

PnEn = − 1

Z1D

∂Z1D

∂β
= h̄ω(nB(βh̄ω) + 1/2) (7)
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where nB is the Bose occupation factor

nB(x) =
1

ex − 1
(8)

The heat capacity for a single oscillator

C =
∂ ⟨E⟩
∂T

= kB(βh̄ω)
2 eβh̄ω

(eβh̄ω − 1)2
(9)

Note that the high-temperature limit of this expression gives C = kB

Generalizing to the three-dimensional case,

Enx,ny,nz
= h̄ω[(nx + 1/2) + (ny + 1/2) + (nz + 1/2)] (10)

and

Z3D =
∑

nx,ny,nz⩾0

e−βEmnx,ny,nz = [Z1D]
3 (11)

resulting in ⟨E3D⟩ = 3 ⟨E1D⟩,so correspondingly we obtain

C = 3kB(βh̄ω)
2 eβh̄ω

(eβh̄ω − 1)2
(12)

for diamond ω is high(most material ω is very low) the Einstein model fits very well

1.3 Debye’s Calculation

Debye realized that oscillation of atoms is the same thing as sound, and sound is a wave,
so it should be quantized the same way as Planck.

1.3.1 Periodic(Born-von Karman)Boundary Conditions

In one dimension, we consider a periodic condition that the two ends are connected
together making the sample into a circle.So the wave eikr is required to have the same value
for a position r as it has for r+L. Then restricts the possible values of k to be

k =
2πn

L
(13)

In three dimensions, K can only take values in a sample of size L3

k =
2π

L
(n1, n2, n3) (14)

Sum over all possible k values we obtain∑
k

→ L3

(2π)3

∫
dk (15)

1.3.2 Debye’s Calculation Following Planck

This is a test
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2 Crystal Structure

2.1 Periodic Array of Atoms

The electrons have short wavelength components that respond dramatically to the regular
periodic atomic other of the specimen. However light waves has longer wavelength than
electrons and see an average over the order(Such as Noncrystalline materials), and not the
less regular local order itself.

And the property is proved by x-ray diffraction, because x-ray have a wave-length com-
parable to the length of a building block of the structure.

2.1.1 Lattice Translation Vectors

An ideal crystal is constructed by the infinite repetition of identical groups of atom.

• Basis: A group is called the basis.

• Lattice:The set of mathematical points to which the basis is attached is called the
lattice.

In three dimensions, translation vectors a1, a2, a3,
The arrangement of atoms in the crystal looks the same when viewed from the point r as
when viewed from every point r’ translated by an integral multiple of the a’s:

r′ = r + u1a1 + u2a2 + u3a3 (16)

• Primitive lattice: The lattice is said to be primitive if any two point from which
the atomic arrangement looks the same always satisfy 16 with a suitable choice of the
integers ui.

• Primitive translation vectors ai

Primitive translation vectors define the crystal axes, which form three adjacent edges of the
primitive parallelepiped.

2.1.2 Basis and the Crystal Structure

The basis of the crystal structure can be identified once the crystal axes have been
chosen.
The number of atom in the basis may be one, or more than one. The position of the center
of an atom j of the basis relative to the associated lattice point is

rj = xja1 + yja2 + zja3 (17)

2.1.3 Primitive Lattice Cell

The parallelepiped defined by primitive axes a1, a2, a3 is called a primitive cell.

• A primitive cell is a type of cell or unit cell

• A primitive cell is a minimum-volume cell
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• There are many ways of choosing the primitive axes and primitive cell for a given lattice

• However the atoms in a primitive cell or primitive basis is always the same for a given
crystal structure.

• There is always one lattice point per primitive cell.(each lattices point only share 1/8 in
one cell.

The volume of a parallelepiped with axes a1, a2, a3 is

Vc = |a1 · a2 × a3| (18)

No basis contains fewer atoms than a primitive basis contains.This is known to physicists as
a Wigner-Seitz cell

2.2 Fundamental Types of Lattices

Crystal lattices can be carried or mapped into themselves by the lattice translations T

2.2.1 Two-Dimensional Lattice

Oblique lattice It is invariant only under rotation of π and 2π about any lattice
point.But special lattices of the oblique type can be invariant under other rotation or mirror
reflection by impose restrictive conditions on a1,a2

Bravais lattices Bravais lattice is the common phrase for a distinct lattice type. There
are five Bravais lattices in two dimensions.

2.2.2 Three-Dimensional Lattice Types

The point symmetry groups in three dimensions require the 14 different lattice types.
The general lattice is triclinic, and there are 13 special lattices.

There are three lattices in the cubic system: the simple cubic (sc) lattice, the body-
centered cubic (bcc) lattice, and the face-centered cubic (fcc) lattice.

Figure 1: The cubic space lattices
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Figure 2: Body-centered cubic lattice, showing a primitive cell.

Figure 3: The rhombohedral primitive cell of the face-centered cubic crystal.

Figure 4: Relation of the primitive cell in the hexagonal system (heavy lines) to a prism of
hexagonal symmetry.

2.2.3 Index System for Crystal Planes

The orientation of the plane by the indices determined by the following rules.

• Find the intercepts on the axes in terms of the lattice constants a1, a2, a3

• Take the reciprocals of these numbers and then reduce to three integers having same
ratio,usually the smallest three integers.
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• The result, enclosed in parentheses (hkl), is called the index of the plane

• if a plane cuts the axis on the negative side of the origin, the corresponding index is
negative, indicated by placing a minus sign above the index (hk̄l)

The indices [uvw] of a direction in a crystal are the set of the smallest integers that have the
ratio of the components of a vector in the desired direction, referred to the axes.

2.3 Simple Crystal Structures

2.3.1 Sodium Chloride Structure

The lattice is face-centered cubic(fcc)

2.3.2 Cesium Chloride Structure

The cesium chloride structure is body-centered positions(bcp).

2.3.3 Hexagonal Close-Packed Structure (hcp)

Figure 5: A close-packed layer of spheres is shown, with centers at points marked A

It can go in over A or over C. If it goes in over A, the sequence is ABABAB. . . and
the structure is hexagonal close-packed. If the third layer goes in over C, the sequence is
ABCABCABC. . . and the structure is face-centered cubic.

2.3.4 Diamond Structure

Figure 6: Crystal structure of diamond, showing the tetrahedral bond arrangement.
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3 Wave Diffraction and the Reciprocal Lattice

3.1 Diffraction of Waves by Crystals

3.1.1 The Bragg law

2d sin θ = nλ (19)

It can be statisfied only for wavelength λ ≤ 2d

Only certain value of θ will the reflections from all periodic parallel planes add up in
phase to give a strong reflected beam.

Figure 7: Bragg reflection

3.2 Scattered Wave Amplitude

spatial distribution of electrons within each cell.

3.2.1 Fourier Analysis

a1, a2, a3 are the crystal axes, any local physical property of the crystal is invariant under
T

Electron density n(r) we can expand n(x in a Fourier series:

n(x) = n0 +
∑
p>0

[Cp cos(2πpx/a) + Sp sin(2πpx/a)] (20)

the n(x has the period a:

n(x+ a) = n0 +
∑

[Cp cos(2πpx/a+ 2πp) + Sp sin(2πpx/a) + 2πp] (21)

= n0 +
∑

[Cp cos(2πpx/a) + Sp sin(2πpx/a)] (22)

2πp/a is the reciprocal lattice or Fourier space of the crystal. In a series form:

n(x) =
∑
p

exp{i2πpx/a} (23)

we require:

n∗
−p = np (24)
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Thus we have

np(cosφ+ i sinφ) + n−p(cosφ− i sinφ) = (np + n−p) cosφ+ i(np − n−p) sinφ (25)

which in turn is equal to the real function

2Re{np} cosφ− 2Im{np} sinφ (26)

We can find a set of vectors G such that

n(r) = sumGnG exp(iG · r) (27)

is invariant under all crystal translations T,nGdetermines the x-ray scattering amplitude

3.2.2 Inversion of Fourier Series

np = a−1

∫ a

0

dx n(x) exp(−i2πpx/a) (28)

np = a−1
∑
p′

∫ a

0

dx exp(i2π(p′ − p)x/a) (29)

so the inversion

nG = V −1
c

∫
cell

dV n(r) exp(−iG · r) (30)

Vc is the volume of a cell of the crystal

3.2.3 Reciprocal Lattice Vectors

To find the vector G, we construct the axis vectors b1,b2,b3 of the reciprocal latiice

b1 = 2π
a2 × a3

a1 · a2 × a3
(31)

b2, b3 = · · · (32)

If a1, a2, a3 are primitive vectors of the crystal lattice, then b1,b2,b3 are primitive vectors of
the reciprocal lattice. Thus it has the property

bi · aj = 2πδij (33)

Points in the reciprocal lattice are mapped by the set of vectors

G = v1b1 + v2b2 + v3b3 (34)

G is a reciprocal lattice vector, Thus we have the desired invariance ,n(r + T) = n(r) =∑
nG exp(iG · r)
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3.2.4 Diffraction Conditions

Theorem The set of reciprocal lattice vectors G determines the possible x-ray reflec-
tions.

Figure 8: The difference in path length of the incident wave k

k +∆k = k′ (35)

Here ∆k is called the scattering vector, Scattering amplitude :

F =

∫
dV n(r) exp[i(k − k′) · r] =

∫
dV n(r) exp{(−i∆k · r}) (36)

So the lattice vector and the diffraciton condition:

∆k = G (37)

2k · G +G2 = 0 (38)

3.2.5 Laue Equations

From ∆k = G we get

a1 ·∆k = 2πv1; (39)

a2 ·∆k = 2πv2; (40)

a3 ·∆k = 2πv3 (41)
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